822 research outputs found

    Inflationary spacetimes are not past-complete

    Full text link
    Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition, that a cosmological model which is inflating -- or just expanding sufficiently fast -- must be incomplete in null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics other than inflation to describe the past boundary of the inflating region of spacetime.Comment: We improve the basic argument to apply to a wider class of spacetimes, use a better title and add a discussion of cyclic models. 4 pages, 1 figure, RevTe

    What is the Homogeneity of our Universe Telling Us?

    Get PDF
    The universe we observe is homogeneous on super-horizon scales, leading to the ``cosmic homogeneity problem''. Inflation alleviates this problem but cannot solve it within the realm of conservative extrapolations of classical physics. A probabilistic solution of the problem is possible but is subject to interpretational difficulties. A genuine deterministic solution of the homogeneity problem requires radical departures from known physics.Comment: 6 pages. Awarded Honorable Mention in the 1999 Gravity Research Foundation Essay Competitio

    Violations of the Weak Energy Condition in Inflating Spacetimes

    Full text link
    We argue that many future-eternal inflating spacetimes are likely to violate the weak energy condition. It is possible that such spacetimes may not enforce any of the known averaged conditions either. If this is indeed the case, it may open the door to constructing non-singular, past-eternal inflating cosmologies. Simple non-singular models are, however, unsatisfactory, and it is not clear if satisfactory models can be built that solve the problem of the initial singularity.Comment: 18 pages, 1 figure (which emerges automatically if you use dvips

    High-contrast Imaging from Space: Speckle Nulling in a Low Aberration Regime

    Full text link
    High-contrast imaging from space must overcome two major noise sources to successfully detect a terrestrial planet angularly close to its parent star: photon noise from diffracted star light, and speckle noise from star light scattered by instrumentally-generated wavefront perturbation. Coronagraphs tackle only the photon noise contribution by reducing diffracted star light at the location of a planet. Speckle noise should be addressed with adaptative-optics systems. Following the tracks of Malbet, Yu and Shao (1995), we develop in this paper two analytical methods for wavefront sensing and control that aims at creating dark holes, i.e. areas of the image plane cleared out of speckles, assuming an ideal coronagraph and small aberrations. The first method, speckle field nulling, is a fast FFT-based algorithm that requires the deformable-mirror influence functions to have identical shapes. The second method, speckle energy minimization, is more general and provides the optimal deformable mirror shape via matrix inversion. With a NxN deformable mirror, the size of matrix to be inverted is either N^2xN^2 in the general case, or only NxN if influence functions can be written as the tensor product of two one-dimensional functions. Moreover, speckle energy minimization makes it possible to trade off some of the dark hole area against an improved contrast. For both methods, complex wavefront aberrations (amplitude and phase) are measured using just three images taken with the science camera (no dedicated wavefront sensing channel is used), therefore there are no non-common path errors. We assess the theoretical performance of both methods with numerical simulations, and find that these speckle nulling techniques should be able to improve the contrast by several orders of magnitude.Comment: 31 pages, 8 figures, 1 table. Accepted for publication in ApJ (should appear in February 2006

    Updated results on prototype chalcogenide fibers for 10-um wavefront spatial filtering

    Full text link
    The detection of terrestrial planets by Darwin/TPF missions will require extremely high quality wavefronts. Single-mode fibers have proven to be powerful beam cleaning components in the near-infrared, but are currently not available in the mid-infrared where they would be critically needed for Darwin/TPF. In this paper, we present updated measurements on the prototype chalcogenide fibers we are developing for the purpose of mid-infrared spatial filtering. We demonstrate the guiding property of our 3rd generation component and we characterize its filtering performances on a 4 mm length: the far-field radiation pattern matches a Gaussian profile at the level of 3% rms and 13% pk-pk.Comment: 4 pages, 5 figures, to appear in the proceedings of the conference "Toward Other Earths, Darwin/TPF and the search for extrasolar terrestrial planets", held in Heidelberg, Germany, 22-25 April 2003, ESA SP-53

    Non-Singular Charged Black Hole Solution for Non-Linear Source

    Get PDF
    A non-singular exact black hole solution in General Relativity is presented. The source is a non-linear electromagnetic field, which reduces to the Maxwell theory for weak field. The solution corresponds to a charged black hole with |q| \leq 2s_c m \approx 0.6 m, having metric, curvature invariants, and electric field bounded everywhere.Comment: 3 pages, RevTe

    Open and Closed Universes, Initial Singularities and Inflation

    Full text link
    The existence of initial singularities in expanding universes is proved without assuming the timelike convergence condition. The assumptions made in the proof are ones likely to hold both in open universes and in many closed ones. (It is further argued that at least some of the expanding closed universes that do not obey a key assumption of the theorem will have initial singularities on other grounds.) The result is significant for two reasons: (a)~previous closed-universe singularity theorems have assumed the timelike convergence condition, and (b)~the timelike convergence condition is known to be violated in inflationary spacetimes. An immediate consequence of this theorem is that a recent result on initial singularities in open, future-eternal, inflating spacetimes may now be extended to include many closed universes. Also, as a fringe benefit, the time-reverse of the theorem may be applied to gravitational collapse.Comment: 27 pages, Plain TeX (figures are embedded in the file itself and they will emerge if it is processed according to the instructions at the top of the file

    Curing singularities: From the big bang to black holes

    Get PDF
    Singular spacetimes are a natural prediction of Einstein's theory. Most memorable are the singular centers of black holes and the big bang. However, dilatonic extensions of Einstein's theory can support nonsingular spacetimes. The cosmological singularities can be avoided by dilaton driven inflation. Furthermore, a nonsingular black hole can be constructed in two dimensions.Comment: To appear as a brief report in Phys. Rev.

    Eternal inflation and the initial singularity

    Full text link
    It is shown that a physically reasonable spacetime that is eternally inflating to the future must possess an initial singularity.Comment: 11 pages, Tufts University cosmology preprin
    • …
    corecore